Control — S-domain

Kelvin Leung, Ph.D.
09-13-2012


http://www.kskelvin.net/

Laplace Transtorm

o Laplace transform

Laplace transform is named after
Pierre-Simon Laplace, who
introduced the transform in his
work on probability therory.

Laplace transform simplifies the
process of analyzing the behavior
of the system. In engineering
applications, normally refer to s-
domain, which corresponding to a
linear time-invariant (LTI) system
for system stability and dynamic
analysis.

Laplace transform definition

F(s)= j: e f(t)dt

wheres =0+ jw

o Reference:
http://en.wikipedia.org/wiki/Lapla
ce_transform

Mathematical Relationship

Commonly Used in Electronics
f () o F(s)

AU < sF(s)
dt

j f(t)dt & Tres)
S

Initial value theorem :
f(0")=limsF(s)
Final value theorem :
f(0) = ling sF(s)



Example of Laplace Transtorm in
electronics circuit

(1) :ip =i,
2):i, =D _ o .0
Example of RC Filter dt dt
Question: Calculation Vo(s)/Vi(s) For
+ VR(t) - V() = vp(O) +ve(0)
IR
o> "\ o V(1) =i R+, (1)
! R ic * * V() =i R+v,(t)
V) “vel®) vl dv, (1)
X T - - v.(t)=CR—=——=+v (t)
® ° dt
Laplace Transform
Vi(s)=sCRV,(s)+V,(s)
Vs) 1
V.(s) ~ sCR+1

Question: Do we need to setup differential equation first???




S-domain representation for circuit

element
iR+ VR(t) - ve(t) = Riy (£) > V() = R (s) o
V.V V VR(S)
L+ VL (t) - w0 =150 7, (5)=511,(5)
V
> AN sL
L HIL(S) sL
ic+VC(t)_ v(t):iji (Mt > Vo(s)=—=T.(s) ® | °
o> | o ¢ cCJF e |
| | . VC(S) _ 1 1

C T I.(s) sC sC




Revisit RC example

1
AL : V,(5) =V (s)
Vis) =Vl R+-5
. . . Vi(s) 1
V.(s) N 1+sCR

Benefit: Simplify circuit analysis without differential equation!




What can we do with the s-domain
transfer function

Example: RC Filter

Ve __ 1y e= v (s) Input Test Signal and
Vi(s)  sCR+1 SCR+1 Corresponding Laplace s-domain
If input 1s assumed to be unit step,1.e.V (?) = 1 E— Laplace s domain

- S Function f{t) _ E—l {FI:S)} F(S) —E {f(t)}
Apply Inital value theorem: unit impulse a(t) 1

elayed impulse dt—7 e '

£(0") = lim sF(s) = lim ———V(s) B -

§® s SCR + 1 unit step u[:t) 1
f(0+) = llm 5 l = llm 1 = 0 delayed unit step u{t — ‘.T) "

so>2» sCR+1s  s=>»sCR+1 ;
Apply Final value theorem e t-ult) 2

: : s

o) =limsF(s) =lim V.(s

£ () =limsF(s) =lim——V/(s)
f(oo) =lim 1 =lim I =1 Steady state output independent of C and R

520 sCR+1s s20sCR+1 4

Laplace transform can help to calculate the steady state response
without solving complicated differential equation.




Benefit of s-domain

o In control theory, it well develop the
understanding of 1st-order and 2st-order
transfer function in s-domain. Therefore,
without solving the equation, we can
simply conclude the response of a system
transfer function without solving the exact
equation, and to design proper
compensation network. This topic is
discussed in another document

= Control - System Response.doc
= Control - Matlab and Control.doc




Homework — Question 1

o Question 1

Find system transfer

function G(s)=Vo(s)/Vi(s) o— "\ \V\—s °
Use final value theorem to * Re | *
determine steady state vi(t) — C <Rz vt
value if unit step response . -
is used. ° ® °
Assume R1=1k, R2=2k,

C=1uF, use matlab to plot
the step response and

Bode Diagram

bode p Ot. 0 Step Response
You will use matlab
function
= TF .
- STEP 5’
= BODE g 03
Verify the step response
with LTspice .

-20

Magnitude (dB)

-30

-40

-45

Phase (deg)

-90

10’ 107 10° 10*
x 10 Frequency (rad/sec)

5
10



Homework — Question 2

O Question 2

= Calculate system
transfer function G,(s) - A\ o« % .

and Gy(s). W wy == ¢
m If Gy(s) and G,(s) are . . .«

connected in series Gi(s) Ga(s)

(cascade), what is the

new transfer function .

Goverall(S)? —> Gy(s) [ Gals) [T
= Explain why G, ¢q(s)is | —1 —

not same as answer of Goverail(s)
question 1.
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Block Diagram

Close-Loop Transfer Function

Close Loop Transfer Function @

’ Vout
Eqn ]' : I/oul = G(S) ) I/error G(S)
Eqn2:V, =H(s)-V,,
By I/error = I/in - Vf
£ H(s)
out  _ I/m —H(S).I/Om
G(s)
v = (Gl oy (S))Vm _ 1+G((;S)H(s) V.
" “ Open-Loop Transfer Function
Vout _ G(S)
e OO BN @ \CI QTS Vou
y -
Open Loop Transfer Function V—f Vs 1'
H(s)
Vy
—=G(s)H (s)

Vi




Numeral Example

Assume system transfer function called 7(s)

@:T(S):Ls) 1 Vout
v, 1+ G(s)H(s) 542
1 1

T(S)= s+2 — s+2 — s+1

R N (15) (35) (S R B ey Pty

1

s+2s+1 (s+2)(s+l) o

s+1 s+1
T =
() s +3s5+3




Howework #1

O Question

= Use matlab to calculate
the system transfer
function T(s).
You will use matlab
function
= TF
= FEEDBACK
= Use matlab to plot the

step response of G(s)
and T(s).

Amplitude

Vout

Step response of G(s)

Amplitude

0.4

0.35

0.3

0.25

0.15

0.1

0.05




Homework #2

o0 Question
= Assume Vin * " \Voror

G(s)zL, H(s)=1,K =10
s+2

Vout

Calculate T(s) with H(s)
matlab.

Plot step response of
G(s) and T(s).
m What |S the Steady Step response of G(s) Step response of T(s)

state value of T(s) in
step response plot? 1 o8

= If K =100, what is g 09 1 gos
the new steady state
value of T(s)?

- What if the
fu nction Of K? 0O % é 3 0O 0.1 0'.2 0'.3 0?4 0.5

Time (sec) Time (sec)

Amplitud
Amplitud




Howework #3

o Question
= Assume

G(s)zL, H(s)=1,K =10
s+2

Calculate T(s) with matlab.

Plot step response of G(s)
and T(s).
= What is the steady state

value of T(s) in step
response plot?

= Change K to observe T(s)
step response.

What if the function

of s'1 in this system? 04
In next slide, design op-
amp compensation
network in LTspice for this
circuit. Use
ans_blank.asc as
template. 0

Amplitude

Vout

Step response of G(s)

Time (sec)

Amplitude

Step response of T(s)




substract T(s)=1/(1+2)

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------

; § remove B
i ! this M Remove this
@' ¥ black B  black box
1 ! box @ foranswer
tran 6 uic for |

Jlib upamp.su;b ¥ answer

-----------------------------------
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15-order System Step Response

o Assume 1st-order system
as

G(s) =2

Step Response of 1st Order System (Different Pole)
S+ P

o Pole is defined as the root
of system denominator = 0

mi.e.s+p=0>s=-p
o Observation

= A less negative pole gives
a slower system.

= A positive pole gives an
unstable system.

m System Time-Constant =

1/p. ' ' Timels)
Time to achieve ~63% of
output




20d_order System Step Response

O

Assume 2nd-order system as
2

a)n
G s +200 s+,
Pole is defined as the root of
system denominator = 0
m e, s+20s+0° =0
Zeta (C) Observation
m (is damping ratio which
affect overshoot and ringing.

m (~ 0.7 can minimize
overshoot but maintain
system speed

Omega (w,) Observation

= W, is natural frequency which
affect system speed.

= Changing w, doesn’t affect
overshoot or undershoot
magnitude.

Output

Output

Step Response of 2st Order System (Different Zeta)

0.1
— 03
0.7
1

ANYaw

w=1

L L L L L L L L L '
2 4 6 8 10 12 14 16 18 20
Time(s)

Step Response of 2st Order System (Different Omega)




System Simplification

Assume 4th - order system

7(s)= 1
s*+42s° + 4835 + 8825+ 802
With the help of matlab"zpk" LM — SepReshense
1 401 2 e
T(s)= ) ) el )
Approximation 1
1 401
I (s)= £ |
(5) 802 s* +40s +401 % o5l
®,, =401 = 20,5, =0.999 04
Approximation 2 02
1 2
L(s)= B
)= 0 v 212 e ()

o, =+2~1.414,c,=0.707

Asw, , <<w,,T,(s) can be used as approximation.

T

Smaller value represents slower system




Homework 1

o Simplify the 5-th order
system T(s)

Step Response
T T

T(s)= 1000000
s° +32s* +1260s° +18400s> +272000s + 480000 -
= Help
Use matlab "tf” to create T
the transfer functions, pol !
then use “zpk” for
factorization. g T
= What is the approximate .
time-constant of the 5-th
order system T(s)? o
= What is the purpose of
System Simplification and
the understanding of 1st o o

and 2nd order system
response?

1 1
1.5 2
Time (sec)

1
25

3.5
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Fundamental of Root L.ocus

Close - loop system is defined as,
T(s) = KG(s)
1+ KG(s)H(s)
where open - loop system is G(s)H ()

Assume G(s) = 6 and H (s) =
den, den,,

num,,

Poles of T'(s)is the root of eqn 1+ KG(s)H(s)=0
g g umg numy,
deng den,,

. dengden,, + K -num num,, =0

If K =0= dengden, =0
therefore, open - loop system poles are close - loop system poles at K =0

—dengden,,

If K — 0= numgnum,, = lim =0
K—w

therefore, open - loop system zeros are close - loop system poles at K — o

Therefore, determine the trajectories of 1+ KG(s)H (s) = 0 for K =0to

is the locus of close - loop system poles.

Remark:
Poles of G(s)H(s) can force deng=0 or den,=0
Zeros of G(s)H(s) can force numg=0 or numy=0

C(s)—»@— K [ G(s) —e> Y(s)

H(s)

Root Locus: Trajectories of Close-Loop System Poles
A

K increses

X Poles of Open-Loop System, Poles of Close-Loop System {@ K =0
O Zeros of Open-Loop Systemn, Poles of Close-Loop System @ K = Inf



rlocus_01_basic.m

Matlab of Root Locus

o Matlab Code

% define the open-loop system as G = (-0.5s+1)/(s”"2+5s)
num=[-0.5 1];

den=[11 0]; Open - Loop Transfer Function as
G = tf(num,den);

Root Locus of Open-Loop Systems G = (-0.5s+1 )/(sz+s)

055 +1 : - - - |
G(s)=—>—
s +s

% calculate pole and zero of close-loop systems
K = 0.647; s i
T = feedback(K*G,1);
[p,z]=pzmap(T);
plot(real(p),imag(p),'rd"); hold on;

Imaginary Axis
o
|

Calculate Close - Loop Transfer Function as S
ystem: E
Gain: 0.647
_ KG(S) Pole: -0.338 - 0.73i
- Damping: 0.42
1 + KG(S) Overshoot (%): 23.3 |

Frequency (rad/sec): 0.805

% plot root-locus of open-loop systems 3
rlocus(G) ’

title('Root Locus of Open-Loop Systems G = (-
0.5s5+1)/(s"2+s)");

Real Axis

Prove from this matlab routine:
rlocus plots the root locus of open-loop system,
which represents the locus of poles of close-loop system with K from 0 to INF.




Root Locus Plot (sgrid)

Constant ¢ Lines and Constant | Circles Constant ¢ Lines and Constant | Circles

ponse Unstable

Region -

2 1%}
x x
< Unstable < _
[0 H [0
Region
E 9 E rdamp to underdamp
N - 5 L L
3 25 =2 45 41 05 0 05 1 0.5 1

Real Axis Real Axis




design_criteria.m

System dynamic design criteria

2% and 5% settling time at £=0.7

5% criterion

@, 1s natural frequency

¢ 1s damping ratio

z
whereo =0, 0, =w,1-¢° £
10" E:
Settling time ()
. . 4 4 10:o° 10' 10° 10°
2% Crlterlon : tS = 4T = = Natural frequency o
c ol
100
o 1 1 3 3 90}
5% criterion: t; =37 = —=—— "l
G a)né/ g 701
g 60|
. g 50
Maximum overshoot (M ) : wf
E
3 30f
_9 . ¢ =7 - 2ol
1_
M,=e® =e ¢ 10

s s s L L L L L
0 01 02 03 04 05 06 07 08 09 1
Damping ratio &




rlocus_02a_design.m

Design with Root-l.ocus Method

(1) In root locus plot, put a

(m]

Matlab Code
% define the open-loop system as G(s)
z=[]; o
p=[0 -5 -10]; Open - Loop Transfer Function as
k=1; 6(s) 1 .
. S)=—F—F=—"1 H
G = Zpk(zrplk)l S(S+5)(S+10) E s

% plot root-locus of open-loop systems
figure;

K=[0:0.2:4e3];

rlocus(G,K); sgrid;

axis([-12 2 -20 20]);

title('Constant \zeta Lines and Constant
\omega_n Circles');

% form close-loop systems T(s) (2) Gain=82.6 1
K=82.6; < for zeta = 0.7
T = feedback(K*G,1);

% plot step response of close-loop system 0l

figure;
step(T);

marker and search for zeta = 0.7

Constant ¢ Lines and Constant o _Circles /

0.42 0.06 175

-4 -2 0 2

Real Axis

Step Response

0.2

L L L L
1 15 2 25 3 35
Time (sec)



Design with Root-l.ocus Method
(Improve response with addition zeros)

o Design of compensator

= Reference
o P.310 of Modern Control
Engineering (5th Edition),
Katsuhiko Ogata.
m Effects of the addition of poles

o Pulling the root locus to the right,
tending to lower the system’s
relative stability and to slow down
the settling of the response.

m Effects of the addition of zeros

o Pulling the root locus to the left,
tending to make the system more
stable and to speed up the settling
of the response.

o Matlab example

= Based on previous design, we add
a compensator with zero = -6.

Original System

G(s)

1

s(s+5)(s+10)

System with addition zero
Ge(s) G(s)

1

K —  S+6 [

s(s+5)(s+10)




Design with Root-l.ocus Method
(Improve response with addition zeros)

Zeta ~ 0.7

Imaginary Axis

Original System

Constant ¢ Lines and Constant o, Circles

________ 038058 02

012 006175

System with addition zero

Constant ¢ Lines and Constant o, Circles

-2

Real Axis

0 2

Observation

e Almost double w, at zeta = 0.7
¢ Close-loop stable for all K.

20 SR o - T T
05T 03808, 02 012 006175
-------------------- T
Zeta ~ 0.7 |5 .
& | Pull root locus to left
ol Rl - (speed up system
response)
“0:88,..:277 e
5 _“_,,‘-' ......................... -
2
>
& 0
£
&
£
N _
-0:887
A0 F T .
osg el |
-15 = i e s e .
e I i B S S— IS
T ; 6 17.5
20 952 . 028 .10 v 0‘,12. 0.06
-12 -10 8 -4 -2 0 2
Real Axis

Addition zero




rlocus_02b_design.m

Design with Root-l.ocus Method
(Improve response with addition zeros)

O

Matlab Code

% define the open-loop system as G(s)
z=[];

p=[0 -5 -10];

k=1;

G = zpk(z,p,k);

% compensator transfer function Gc(s)
num=[1 6];

den=[1];

Gc = tf(num,den);

% plot root-locus of open-loop systems Gc(s)G(s)
figure;

K=[0:0.2:1e3];

rlocus(Gc*G,K); sgrid;

axis([-12 2 -20 20]);

title('Constant \zeta Lines and Constant \omega_n
Circles");

% form close-loop systems T(s)
K = 36.6;
T = feedback(K*Gc*G,1);

% plot step response of close-loop system
figure;
step(T);

Imaginary Axis

Amplitude

Constant ¢ Lines and Constant o _Circles

System: untitled1
Gain: 36.6

Pole: -3.89 - 3.91i
Damping: 0.705
Overshoot (%): 4.38
quency (ra c): 5.52

042 006175

Wi
-10 -8 -6 -4 -2 0 2
Real Axis

Step Response

08

06

041

02F

L L L L L L
0.2 0.4 0.6 0.8 1 1.2 14
Time (sec)



Exercise #1

O Exercise #1

= Use matlab to

determine the gain K
and time constant T of
the controller Ge(s)
such that the closed-
loop poles are located
at s=-2+/-j2.

Hint: T can be

determined by trial and

error method in matlab.

Imaginary Axis

Real Axis

Ge(s) G(s)
K —1  Ts+1 [
S s(s+2)
Root Locus
5 T———
064" 05, _.c System: GH

076 7 Gain: 8.02
Jfoze | Gam 802

s .. Pole:-2 +2i

4 .. . Damping: 0.707
3k Overshoot (%): 4.32

.. Frequency (rad/sec): 2.83
2F
1o.085.
0
-1 i B =y
o
-3 B N S A s
Alote. eSS T
064~ 05 ~0:34.__0.16

-5 i 1 | I o 1 1
-5 -4 -3 -2 -1 0 1 3
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Rules for Constructing Root Locti

o Reference
= P.283-287, "Modern Control Engineering”, Fifth Edition,
Katsuhiko Ogata
= The construction rules in this ppt follows the Ogata
textbook.

Root Locus is the root trajectory of Characteristic Equation
dengden,, + K - numznum,, =0
or
1+K-G(s)H(s)=0
or represented in general form
B(s)+K-A(s)=0
where
roots of A(s) = 0 are open - loop system zeros

roots of B(s) = 0 are open - loop system poles

Therefore, root locus can apply for any system which re - write to this general form.




Rule #1

O Locate the poles and zeros of G(s)H(s) on the s plane.

= Root-locus branches start from open-loop poles and terminate at zeros
(finite zeros or zeros at infinity)

m Assume

Number of poles = n

Number of zeros = m
= If n>m, then system has n-m infinity zeros
= If n<m, then system has m-n infinity poles
= If n=m, then system has no infinity poles or zeros.

poles =0, -10; zeros =-5 poles =-5; zeros =0, -10 poles =-3, -5; zeros =0, -10
2 2 0.8
15 E 15 E 0.6
1 NnN>m ] 1 nN<m ] 04 NnN=m
2 05 E L 05 E 2 02
2 4 2
> > >
§ <o_ 5 0 € § 0 )
o - j=)) - j=2}
g s} zero atinf £ .osfpole atinf £ 02
-1 E -1 E -0.4 . E
No inf poles and zero
-1.5 E -15 E -0.6 k
2 . L -2 L - -0.8 ; ’
-30 -20 -10 0 10 -30 -20 -10 0 10 -30 -20 -10 0 10

Real Axis Real Axis Real Axis




Rule #2

o Determine the root
loci on the real axis

= Put a test point on the
real axis,

If the total poles and
zeros to the right of
this test point is odd,
then this point lies on
the root locus,
otherwise, point
doesn’t lies on the root
locus.

poles =0, -10; zeros =-15
T T

-
o

Imaginary Axis

& & A~ N o NOA o ®
O

L ,
:
&HO
S T

1 1 1 1 1 1
-25 -20 -15 -10 -5 0 5 10
Real Axis

poles+zeros = 2, even, no root locus

poles+zeros = 1, odd, lie on root locus




Rule #2 (examples)

Imaginary Axis

Imaginary Axis

10

poles =0, -10

-5

-10

-20 -10 0
Real Axis

poles =0, -10; zeros =-15

10

-20 -10 0
Real Axis

10

Imaginary Axis

Imaginary Axis

poles =0, -10; zeros =-5
4
2
0 % *—O
-2
-4 :
-30 -20 -10 0 10
Real Axis
poles =0, 0, -10
40
Double poles at 0
20
0
-20
-40 :
-30 -20 -10 0 10
Real Axis



Rule #3

o Determine the asymptotes of

root loci
+180°(2k +1)
n—m

Angles of asymptotes = (k = 0,1,2,...)

where
n =number of finite poles of G(s)H(s)
m =number of finite zeros of G(s)H(s)

H(S+Zn)
[1G+p,)

If open - loop systemis G(s)H (s) =

Intersection of asymptotes

DA%

n—m

S.

intersection

Caution p,, and z, not poles and zeros
For example, if poles are -1, -2, p;=1, p,=2
(s+p1)(s+p2)

n=3m=0

angles of asymptotes =

*180°(2k +1) _ +60°(2k +1) = £60°,+180°

_(2+2+5)-0

n=2m=0
+180°(2k +1 . o o
angles of asymptotes = # =190 (2k + 1) =290",£180
2P—2.% _ (0+10)-0
intersection = - _5
n—m 2
poles =0, -10
10 - !
|
|
0 5f 1 1
2 [
>
a Tl = Tl = Tl ~ il ~ "l o™ ~ il Y o - S - S~ Rl e
£ I
& [
E 57 [ .
|
_10 1 1
-20 -15 -10 -b 0 5
Real Axis
poles =-2,-2, -5
10 : ———
\
\
X%] 5f \ 1
Z
>
& 0
£
& /
g 5 Vs 1
/
L/
107 5 5
Real Axis

N 2Pm2E

intersection 3

n—m

=3




Rule #4

o Find the breakaway and break-in points

Identify the characteristic equation in this format
B(s)+K-A(s)=0

Breakaway or Break - in points are the roots of

dB(s) dA(S)
a_ AT BT
ds (A(s))
o A(s )dB(s) _B(s )dA(S) 0

A actual breakaway or break - in point can obtain K as a positive number

: dK : - :
by substitute that s (root of e = 0) into characteristic equation.
s




Rule #4

Assume Open - Loop system
s+15 s+15
G(s)H(s) = =
(H(s) s(s+10) s?+10s

.. Characteristic equation is

s+15

1+K-G(s)H(s)=0=1+K > =
s”+10s

0

o (52 +108)+ K(s+15)=0
where A(s) =s+15,B(s)=s” +10s

Breakaway or break - in points

A(s) dB(s) © dA(s)
By __ ds ds _ _ 0
y 2
ds (4(s))
dB(s) _B(s) dA(s) _

ds ds
2
- (s+15)i—)d s +105) (o2 +1os)—d(s+15) )
ds ds
= (s+15)2s+10)— (s> +10s)1)=0
=5 +30s+150=0
S.s=—6340rs=-23.66

0

= A(s)

Put s = —6.34into (s? +10s )+ K(s +15)= 0= K =2.68
Put s =—-23.66 into (s> +10s )+ K (s +15)= 0 = K =37.32

poles =0, -10; zeros =-15
T

Imaginary Axis

System: sys System: sys
Gain: 37.3 Gain: 2.68
Pole: -23.7 Pole: -6.34
Damping: 1 Damping: 1

Overshoot (%): 0
Frequency (rad/sec): 23.7

Overshoot (%): 0
Frequency (rad/sec): 6.34

-20 -15 -10 -5 0 5
Real Axis




Rule #5

o Determine the angle of departure (angle of arrival) of the root
locus from a complex pole (at a complex zero)

= Angle of departure from a complex pole = 180°
- (sum of the angles of vectors to a complex pole in question from other poles)
+ (sum of the angles of vectors to a complex pole in question from zeros)

= Angle of arrival at a complex zero = 180°
- (sum of the angles of vectors to a complex zero in question from other zeros)
+ (sum of the angles of vectors to a complex zero in question from poles)




Rule #5 (example)

1
X |

Angle of departure from a complex pole =180" — (1 35" +90° )+ (1 17° ) =72




Open-Loop Pole-Zero Contigurations
and the Corresponding Root Loct
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Open-Loop Pole-Zero Contigurations
and the Corresponding Root Loct

Root Locus Root Locus Root Locus
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Example of compensating a system with
addition zeros

Root Locus Root Locus Root Locus
2 2
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Example of compensating an unstable
system

Root Locus Root Locus
2| Unstable for all K ; 2 Stable system when
) ) Gain > ¢ertain value
2 2
>
£ 0 x x =) % 0 e S %
: AR
@ @
E 5 | = 2 Apply rule#3 1
- - Change asymptotes angle and its |intersection
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Frequency Response
Method - Bode Plot
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Bode Plot

0 Bode Plot

= Presenting frequency-
response characteristics
in graphical forms.

= Plot of Logarithm of the
magnitude of a
sinusoidal transfer
function

= Plot of phase angle

= Against the frequency
on a logarithmic scale.

System transfer function G(s)
Substitute s = jow = j2af
G(s) can be expressed as
G(jw)=|G(jw) LG(jw)

Logarithm Magnitude
|G0'a))|dB = 2010g(|G(ja))|)



Typical Bode Plot, GH=1/s

Bode Diagram of G(s)H(s)

40

20

Bode Plot of

-20dB/decade

Magnitude(dB)
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G(s)H(s) =~ S

. IIIIIO ' e ' —
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Frequeliwcy (o)
Substitute s = jw 50

L .

Gjo)H(jw)=

Phase(deg)
o

90 -9Q¢°

-180
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Frequency (o)

w=1=|G(s)H(s)|=1=0dB




Typical Bode Plot, GH=s

Bode Diagram of G(s)H(s)

40

20

+20dB/decade

Magnitude(dB)
o

-20

Bode Plot of
G(s)H(s)=s A

Frequeliwcy (o)

Substitute S = ] a 180
. . . S 90 +90°
G(jo)H(jo)=jo S
£ 90
80 prmrperprr e e
10 10" 1d|)° 10' 10>

Frequency (o)

w=1=|G(s)H(s)|=1=0dB




Typical Bode Plot, GH=a/(s+a)

asymptote

Bode Diagram of G(s)H(s)

Qp=euuueus e
B d Pl f g 20 -20dB/dedade
ode Plot o <
l% -40
a =
G(S)H(S): T T R
S+Cl 10 10 10 10 10
Frequeliwcy (0)4¢—— Normalized w/a
Substitute s = jw 0
a § 90
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o T oo 1 i i
107 10" 10° 10’ 107

Frequency (o) «—— Normalized w/a

w=da
=|G(s)H(s)|=1=0dB
= LG(s)H(s) =45




Typical Bode Plot, GH=(s+2)/a

Bode Diagram of G(s)H(s)

60
o
S 40
Bode Plot of g
S+ a (2%) 20 / +20dB/decade
G(s)H (s) = RSO S 5.t IS )
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Typical Bode Plot, Second-order

This example: w,=1, {=0.7

Bode Diagram of G(s)H(s)

40
20

-20
40
-60

Bode Plot of -40dB/dedade
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Example 1: Construct ot Bode Plot

Plot the Bode Plot of G(s)H (s)
s+100
(s+1)s+10)
Re - write the G(s)H (s) into standard form
100 1 10 s+100
[-10 s+1s+10 100

G(s)H(5) = 10- 1 10 s+100
4 s+1s+10 100

G(s)H(s) =

G(s)H (s) =

dcgain = 10
dcgain(dB) = 20*log(dcgain)=20dB

Magnitude(dB)

Phase(deg)

dcgain=20dB Bode Diagram of G(s)H(s)
2 T T T
: lo=-1 -20dB/decade
R U POIE= L NNQA
e
Db b PRI TN 49‘45.’@?96‘?.9 .........................
LA - e e TR L
60 : : zero=-100
20dB/decade
1l I L1l L L 1 Ll L1
-80— -1 0 1 2 3 4
10 10 10 10 10 10 10
Frequency ()
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Frequency ()



Example 2: Construct of Bode Plot

Bode Diagram of G(s)H(s)

10 ! ! ! ! !
o 50 §+dcgain(db),st;iﬂup26dB
Plot the Bode Plot of G(s)H (s) g 5
100000 =
G(s)H(s)= -
($)HE) s(s? +100s +5000) 19
Re - write the G(s)H (s) into standard form -151C0_ S—
Gy () — 100000 1 (V5000 ]
(\/5000)2%%2- 050005 + (5000 18
75000 ( )2 o
G(S)H(s)zzo.l. (‘VSOOO)Z g o
A 5 52 +2x0.707x+/5000s +(1/5000 | 2
where @, =+/3000 =70.7 and ¢ =0.707 T g0
-27@
10° 10" 10 10 10 10 10
dcgain = 20 Frequency @)

dcgain(dB) = 20*log(dcgain)=26dB ©wn=70.7
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Nyquist Plot

O IntrOd UCtIOn Black Line: Magnitude of G(s)H(s)

. Red Line: Phase of G(s)H(s)
= Bode plot and Nyquist

plot are commonly used ‘ e
in the frequency- 3t 120 ----------------------------- Bom -
response representation AV R OV
of LTI (Linear Time

Invariant) feedback

Imagine Axis
o

control systems. 4L
BOde pIOt iS 2 158“
rectangular plot AN,
Nyquist plot is polar ) A P

p I Ot Real Axis

= Includes the loci for Mag ,, = 201log,,(Mag)
both w>0 and w<O0. or

Mag 45

Mag =10 %

quist_polar_grid.m




Bode and Polar plots

Bode Diagram

T Trajectory has direction!

20

Polar Diagram

20 o

-40

Magnitude(dB)

-60 S

10? 10™ 10° 10’ 10°

Bode Diagram

Magnitude

330 (-30)

&) et 111
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15
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Spectal Point 1n Nyquist Plot

o Point: -1+j0
= Magnitude = 1 = 0dB
= Phase = -180°

= In Bode plot, for a
stable system
Condition 1
= If G(s)H(s) doesn't
have right half plane
poles

Condition 2
= |G(s)H(s)| <0dB

when Phase = -1800.

Therefore, this point
is critical in Nyquist
plot.

Imagine Axis

L ;1500

90°

a 300 |

Real Axis




Stability Analysis of Nyquist plot

O Reference

= Page 454, "Modern Control Engineering (5th Edition)”,
Katsuhiko Ogata.

O Rules

1. There is no encirclement of the -1+j0 point. This
implies that the system is stable if there are no poles
of G(s)H(s) in the right-half s plane; otherwise, the
system is unstable.

2. There are one or more counterclockwise encirclements
of the -1+4+j0 point. In this case the system is stable if
the number of counterclockwise encirclements is the
same as the number of poles of G(s)H(s) in the right-
half s plane; otherwise, the system is unstable.

3. There are one or more clockwise encirclements of the -
14+j0 point. In this case the system is unstable.




Rule #1, Stable System
(no encirclement of -1+j0

no encirclement

Bode Diagram
Gm = Inf dB (at Inf rad/sec) , Pm= Inf Nyquist Diagram Close Loop Step Response
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Rule #1, Unstable System

(no encirclement of -1+j0

no encirclement

Bode Diagram
Gm=2.5dB (at 0 rad/sec), Pm=Inf Nyquist Diagram X 105@Iose Loop Step Response
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Rule #2, Stable System

(counterclockwise encirclement of -1+j0)

2 counterclockwise encirclement

Bode Diagram

Gm=-13.9 dB (at 2.16 rad/sec) , Pm=Inf Nyquist D%ram Close Loop Step Response
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Rule #2, Unstable System

(counterclockwise encirclement of -1+j0)

1 counterclockwise encirclement

Bode Diagram
Gm=-5.61dB (at 1.53 rad/sec) , Pm=Inf Nyquist Diagra X 1ofﬁlose Loop Step Response
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Rule #3, Unstable System

(clockwise encirclement ot -1+)0)

1 clockwise encirclement

Bode Diagram
Gm=-20dB (at 0 rad/sec), Pm=118 deg (at 9.95 rad/sec) Nyquist Diagram X 10@Iose Loop Step Response
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Appendix

Standard G(s)H(s) Bode and
Nyquist Plots



G(s)H(s) = é

Bode Diagram

Gm=Inf, Pm=90 deg (at 1 rad/sec) Nyquist Diagram Close Loop Step Response
20 10 Y 1
3 5 0.8
10 %
_ < 2 06
m = 2
il g O =1
g o g £ o
=] £
c = 5
g 0.2
=
-10 -10 0
- -0.5 0 0.5 0 2 4
Real Axis Time (sec)
-20
-89
Poles Zeros Map of G(s)H(s) Unit Gain Root Locus G(s)H(s)/k
1 0.1
-89.5
§ o 0.5 1 o 0.05
o
g 90 i i
Jo § 0 X E 0
o (=) o)
-90.5 £ £
’ = -05 = -0.05
-91 » - E 1 A . . 01 ) )
10 10 10 -1 -0.5 0 0.5 1 -1.5 -1 -0.5 0
Real Axis Real Axis

Frequency (rad/sec)




G(s)H(s)=s

Magnitude (dB)

Phase (deg)

Bode Diagram

Gm=Inf, Pm=-90 deg (at 1 rad/sec)
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1

G(s)H(s) = 1

Bode Diagram

Gm=Inf, Pm=-180 deg (at 0 rad/sec) Nyquist Diagram Close Loop Step Response
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G(s)H(s)=s+1

Bode Diagram

Gm=Inf, Pm=-180 deg (at 0 rad/sec) Nyquist Diagram Close Loop Step Response
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2
G(s)H (s) = ———— _wherew, =1,¢ =0.7
s*+20w s+ o,

Bode Diagram Nyquist Diagram Close Loop Step Response
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Gain and Phase Margins Detfinition in
Bode and Nyquist plots (stable)

Bode Diagram
Gm=6.02 dB (at 1.41 rad/sec) , Pm= 32 deg (at 0.921 rad/sec)

40

20 : .
. 0dB Nyquist Diagram
2 l 1.5
2 0 J T¢Em
2 1
% 20 P
= 0.5 -3

-40 i :: Gm_@

K ,,,,,,

0 @ oo
_60 " ' //lirr],&’ }
0 0.5 /
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§ PmT 15
g 180 ' -1 0 1
g -180°
-225 1 Numerial Example for Nyquist plot
K,=05
-270 : - |
-1 0 1
10 10 10 Gm=—=2=20log(2)=6.02dB
Frequenc¢y (rad/sec) Kg
4 0.5305
Gain crossover Phase crossover Pm = tan =
frequency frequency 0.8476




Gain and Phase Margins Detfinition in
Bode and Nyquist plots (unstable)

Bode Diagram
Gm=-1.94 dB (at 1.41 rad/sec), Pm=-8.54 deg (at 1.57 rad/sec)

10
5 y Nyquist Diagram
Q 1.5
7.'; (’;’n;"’ S 0dB
ER T S ———
= ;
& .
z2 5 0.5
Py
-10 g (J ,,,,,,,,,, o
-150 0.5 |-+ E
1 Becs SV St
g
> -180 -1.5
T m -1 0 1
\ Numerial Example for Nyquist plot
K, =125
-210
0 0.3 1
10 10 Gm=—=0.8=2010g(0.8) = ~1.94dB
Frequency (rad/sec) Kg
Pm=—tan™ 0.1484 =-8.54"
0.9889




Relationship between open-loop and
close-loop response

o Natural frequency (w,)

= W, in closed-loop system is somewhere between the gain crossover
frequency and phase crossover frequency in open-loop system.
page. 473-474 of "Modern Control Engineering”, Ogata, 5th Edition

= A very rough estimate is that the bandwidth (freq @ -3dB) is
approximately equal to the natural frequency.

[http://www.engin.umich.edu/class/ctms/freq/freq.htm]

o Damping ratio (0)

= Phase margin in open-loop system has linear relationship with C of
closed-loop system
Exact Formula

Phase margin (y) and Damping Factor (')

2
\/1/1+4g4 ~207

Approximation: for { < 0.6, (= 0.01 Pm

y=tan"




Design with Bode Plot

O Design criteria
= Bode plot can only be used to design close-loop feedback from
stable open-loop system (i.e. G(s)H(s) doesn’t has RHP poles),
otherwise, Nyquist or Root-Locus need to be used.
Reason: Refer to stability rule #1 in Nyquist plot powerpoint.

m System performance

DC Gain
= Determine the steady state error
Increase of DC Gain, Decrease of Steady State Error

Phase margin
= Determine the damping ratio and overshoot.
Phase margin is normally selected to between 30°-60°.

Gain margin
= Determine the robustness of system. Normally > 6dB.
To guarantee stability even if the open-loop gain and time
constants of the components vary to a certain extend.
Gain/Phase crossover frequency

= Determine the transient response speed.
Increase the crossover frequency, Increase transient speed.




Stability of multiple phase
crossover frequencies system



Stability of multiple phase crossover

Bode plot shows a system which has multiple phase crossover at 180°

Bode Diagram x 10* Root Locus
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Root locus shows that there are 2 region of gain K which can
give stable system

Therefore, root locus actually indicate “second” phase
crossover can be used to generate a stable system




Stability of multiple phase crossover

Bode Diagram

Gm=-15.9 dB (at 3.05e+003 rad/sec) , Pm= 13.8 deg (at 8.65e+003 rad/sec) X 104 Close-loop Poles-Zeros Map
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X
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System is stable as long as phase margin is +ve,
even the phase drops below -180° before that.




Stability of multiple phase crossover

Stable Case: Low Gain

Gain crossover

Bode Diagram
Close-loop Poles-Zeros Map

Gm=10.5dB (4 113 rad/sec) , Pm=33.8 deg (at 57.6 rad/sec)
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Unstable Case: Middle Gain

Bode Diagram
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Stability of multiple gain
crossover frequencies system



Stability of multiple gain crossover

Phase margin is measured at the highest gain crossover frequency

Bode Diagram
Gm=-2 dB (at 1.08e+003 rad/sec) , Pm=-11.8 deg (at 1.12e+003 rad/sec) Close-loop Poles-Zeros Map
20 2000
\ 4
0 R — ¥
" 1000 E
-20F . bd
g 40 g 0 ©
s 5
2 £
E 60t . = 1000} < .
©
=
-80} i
-2000 ! !
-1500 -1000 -500 0 500
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0
x 10% Close-loop Step Response
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3
o -135} 1 8
7] 2 0 v
© =
N [=%
o -180 E
-225} 1 21
270k 1 1 1 -4 1 1 1 1 1
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Lead and LLag Compensator Definitation

Lead Compensator Lag Compensator

zero dominate pole dominate
Lead Compensator (Poles Zeros Map) Step Response Lag Compensator (Poles Zeros Map) Step Response
1 1 1 10
@2 05 @2 05
2 v 8 2 M 8
5 o0 © £ 05 5§ o © £ 5
= £ = £
© < © <
E -05 E 05
-1 0 -1 0
-150  -100  -50 0 50 0 0.02 0.04 0.06 -150  -100  -50 0 50 0 0.2 0.4 0.6
Real Axis Time (sec) Real Axis Time (sec)
. Bode Diagram . Bode Diagram
g o 4z g S+z
ry S Y
§ 0 G.(s)= g o \ G.(s)=
g -0 St+p g o St+p
S s " where p >z S e where z > p
£ o £ 0 A
10° 10° 10" 10° 10 10
Frequency| (rad/sec) Frequency| (rad/sec)
Add +ve phase
P Subtract -ve phase
Application: Application:
e Speed up system response e Improve steady state error
¢ Avoid changing system dynamic
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Example of system compensation with
lead compensator — root locus

(2) Add a lead compensator
to shift the root locus to left

Open-Loop System G(s) Root-Locus Open-Loop System w ith compensator Ge(s)G(s) Root-Locus
5 T T T T T T T T T T System: GcG
Gain: 0.2
1 () I Pole: -0.666 + 0.676i
(1) Qpen loop system Damping: 0.702
Overshoot (%): 4.54
1] (] Frequency (rad/sec): 0.94
2 2
> >
g O Y
= | =]
: 2K t
g System: G g
- Gain: 0.052 -
Pole: -0.5 - 0.52i
Damping: 0.693
Overshoot (%): 4.87
5L Frequency (rad/sec): 0.721 5
-6 -5 -4 -3 -Z -1 0 1 -6 -5 -4 -3 -2 -1 0 1
Real Axis Real Axis
Close-Loop Step Response, {=0.7 Close-Loop Ramp Response, {=0.7
1.4 10
1.2 KG(s) with K=0.051
8 KGc(s)G(s) with K=0.199
1 P e
2 08 g 6
2 2
3 s
£ 00 < 4
KG(s) with K=0.051
0.4 KGc(s)G(s) with K=0.199
2
0.2
0 - 0
0 5 10 15 0 10
Time (sec) Time (sec)

(3) Select K with zeta=0.7 for comparison
1. Step and ramp response improved
2. System speed increased




Example of system compensation with

lead compensator — bode plot

Magnitude (dB)

Phase (deg)

Magnitude (dB)

Phase (deg)

-100

-135F

-180

-100

135}

-180

Bode Diagram
Gm = Inf dB (at Inf rad/sec) , Pm=65.2 deg (at 0.463 rad/sec)
50 T T T

0

-50

-90

10 10" 10° 10’ 10°

Frequency (rad/sec)

Bode Diagram
Gm = Inf dB (at Inf rad/sec) , Pm=65.9 deg (at 0.713 rad/sec)
50

0

-50}F

-90

107 10" 10° 10’ 10°

Frequency (rad/sec)

Bode Plot of 0.051*G(s) and 0.199/0.051*Gc(s)

50
g Boost gain and phase
5 -50
©
=
-100
90
g o 4
Y
8 -90
T
-180

2 10" 10° 10' 10°

Frequency (rad/sec)

o

0.051*G(s)
0.199/0.051*Gc(s)

Consideration

1. To improve the speed, we need to boost the gain for
higher crossover frequency

2. However, if we only boost up the gain, phase margin
reduce.

3. Lead compensator can boost up the gain and phase.

4. Therefore, crossover frequency increased without
changing phase margin

Remark:

o crossover frequency related to wn. Wn is somewhere
between gain crossover freq and phase crossover freq.

o phase margin related to zeta
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Example of system compensation with
lag compensator — root locus

(2) Add a lag compensator

Syeﬁmﬁaop System G(s) Root-Locus Open-LooSBstetantieh compensator Ge(s)G(s) Root-Locus
2— g;: 10 33 +0.587i 2 s;: 0()?;3] +0.554i Open-Loop System with compensator Go(s)G(s) Root-Locus
:-0. . :-0. .554i
Damping: 0.49 Damping: 0.49 015 :
) Overshoot (%): 17.1 ] 1 Overshoot (%): 17.1 a4
Frequency (rad/sec): 0.674 Frequency (rad/sec): 0.635 '
2 [ | @ ™ 2 005
: ( : ( B
E 0 E 0 o g
) £ g o5
(0] © -
£ £ 04
- A -1 1 018 ;
(1) Open loop system o7 03 @z @7 o o
Real Axis
2 . . 2 . .
-3 2 -1 0 1 3 2 -1 0 1 .
Real Axis Real Axis Zoom near Origin
Close-Loop Step Response, £ =0.49 Close-Loop Ramp Response, ¢ = 0.49
14 10
. KG(s) with K=1 KG(s) with K=1
: f\\/\ KGc(s)G(s) with K=0.973 || 5 KGc(s)G(s) with K=0.973 |/
1 NSO
g os g °
2 =2
s s
g 06 £
< < 4
0.4
2
0.2
0 . . . . . . 0
0 10 20 30 40 50 60 70 0
Time (sec) Time (sec)

(3) Select K with zeta=0.49 for comparison
1. Avoid changing system dynamic
2. Reduce steady state error at ramp response




Example of system compensation with
lag compensator — bode plot

Bode Diagram

Gm=15.1dB (at 1.41 rad/sec) , Pm=51.8 deg (at 0.468 rad/sec) Bode Plot of G(s) and 0.973*Gc(s)

100 T 100
g g
g g
’é m \ g -100 G(S)
g g 0.973*Ge(s)
-200 L L L -200 - e i —a
-90 0 ; ' Lag compensator
F F w0 feeeeeeeeeee——----! doesn't affect phase in
o 180 FY high frequency region
= ) -180
o ['%
-270 2 : 1 .0 .1 2 -270 2 1 0 1 2
10 10 10 10 10 10° 10 10 10 10
Frequency (rad/sec) Frequency (rad/sec)
Bode Diagram
Gm=14.7 dB (at 1.37 rad/sec) , Pm=46.8 deg (at 0.459 rad/sec) . _
100 Consideration
g 1. To improve steady state response (ramp input) but avoid
2 \ changing system dynamic, we need to boost the gain at
g -100f ] low frequeng:y without changing crossover frequency and
. , , , phase margin
-90 2. By properly select the Lag compensator, it can increase
5 the gain at low frequency without affecting the phase
o
3 -180 near crossover frequency.
g 3. Therefore, low frequency gain increased without changing
-270 . . s crossover characteristic.
107 10" 10° 10’ 10°

Frequency (rad/sec)
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Analog to Digital Implementation

O Purpose

= This ppt is intended to show the procedure of
transforming an analog system into digital
implementation with the help of matlab.

= Theory of digital control is not the target of
this ppt.

= By following this ppt, you can convert your
analog compensator into a digital formula and
implement it in a digital processor.




Concept of Sampling

Sampling frequency
fsamplmg—L:L:ZOHz
. Tmpiing ~ 0-05
o Concept of Sampling : B —
= In digital controller, ADC o compes Senal
(analog-to-digital converter)
and DAC (digital-to-analog s 08 y[n]
converter) are used. ADC 2 ‘1’
and DAC are not continuous =
device but discrete time < °\f
sampling input or output. T T
= Sampling frequency is s ,
determined by designer. This o0z oe K3
is an important parameters to " n-1] yIn+1]
interface the analog and 1 |

digital system.
o Concept of Z-transform

1Sampled signal
= S-domain transfer function
can be converts into z-domain
through z-transform.

= In z-transform, we need to T h?l lé@TTTT%
remember time-shifting Ml
property N | . |

X[n - k] = Z_kX(Z) ’ Sample Number (n)

0.5f

Amplitude of y[n]

b=




2nd-order transfer function example

(analog transfer tunction)

o Assume we design a
compensator G.(s)
and need to
implement with a
digital controller

V. .(s 1
GC (S) — ctrl ( ) — .
V. .(s) s +1l4s+1

o In matlab,

m % define a 2-nd order analog
system

wn=1;

zeta=0.7;

num=[wn.”2];

den=[1 2*wn*zeta wn"2];
G=tf(num,den)

/

V i j V V
ref error GC(S) ctrl Plant

Transfer functilon:

s+ 1.4 s + 1
|

Define the analog transfer function

\J



2nd-order transfer function example

(convert to digital transfer function)

o In matlab

Amplitude

% convert the analog system to
digital system «— Sampling time

Transfer functlon:
0.0182 = + 0.01&657

v

Gz=c2d(G,0.2)
% form of Gz digital
implementation
M = idpoly(Gz)
% plot the step respo
digital system
step(G); hold on; step(Gz); hol
legend('G(s)','Gz(s)");

of analog and

Step Response

14
G(s)
2 ——Gzs) |
1 B e S
0.8
0.6 k\\\
04 With ZOH
0.2 (Zero-order hold)

zhd - 1721 = + 0.755%

sampling time: 0.2

Discrete-time IDPOLY model: s(t) = [Big)/F{qiJuft) + eit)
E{q) = 0.0182 g*-1 + 0.01457 q*-2

Figy=1- 1721 g*-1 + 0.7558 g*-2

This model was not estimated from data,
Sampling interval: 0.2




2nd-order transfer function example
(digital formula from transfer function)

Method #1
Discrete - time transfer function

v, (2) _ 0.0182z+0.01657

v. (z) z°—1.721z+0.7558

0.0182z+0.01657 z> 0.0182z™' +0.01657z"

22 -1.72124+0.7558 z2  1-1.721z" +0.7558z 2

Therefore,
v, (2)=-1.721z"v_ (2)+0.7558z%v_,(2) =0.0182z""v, (2)+0.01657z v, (z)
v, (2)=0.0182(zv,, (2))+0.01657(z v, (2))+1.721(zv,,,(2))-0.7558(z *v,,,,(2))

v, [n]=0.0182v,  [n-1]+0.01657v, [n—2]+1.721v,_,[n—1]-0.7558v_,[n—2]

G.(2)=

Ge(2)=

error error

Apply time shifting property

Transfer function: x[n—k]=Z_kX(Z)
0.0182 =z + 0.014657

z42 - 1,721 = + 0,7558

sampling time: 0.2




2nd-order transfer function example

(digital formula from IDPOLY)

Method #2 Rewrite discrete - time IDPOLY as

_ 0.0182¢" +0.01657q ()
1-1.721g7 +0.7558¢°

¥(?)

where y(t) > y(k),u(t) > u(k),q - z
0.0182z" +0.01657z°

y(k) = 5 >
1-1.721z7" +0.7558z

(k) =0.0182z"u(k)+0.01657z*u(k) +1.721z "' y(k) —0.7558z 7 y(k)

u(k)

k) =0.0182(z"u(k))+0.01657\z *u(k) )+ 1.721z " y(k) )-0.7558(z > y(k
v (k) (Z u( )) (Z u( )) (Z 7 )) (Z y( )) Apply time shifting property

V[n]=0.0182u[n—-1]+0.01657u[n - 2]+1.721y[n —-1]-0.7558 y[n — 2]
x[n—kl=z"X(z)

Asoutput y=v,, andinputu=v,
v,.[n]=0.0182v,  [n—-1]+0.01657v

error [

n—=2]+1.721v

ctrl

[n—1]-0.7558v

ctrl

[n—2]

error

Discrete-time IDPOLY model: s(t) = [Bigq)/F{qiJult) + eit)
Biq) = 0.0182 g#-1 + 0.01457 q*-2

Figy =1- 1721 g*-1 + 0.7558 q*-2

Thiz model was not estimated from data.

Bampling Interval: 0.2




Formula Impementation in Matlab

o Matlab Implementation

% time vector
t=[0:0.2:12]; % sampling Tsampling is 0.2s
% initialization Step Response

errorO=1; % error[n] 14 ' ' ' . .

errorl=0; % error[n-1] G(s)

error2=0; % error[n-2] Initialization = 0 ol Gz(z) I
ctrl1=0; % ctri[n-1] : O  Digital Implementation

ctrl2=0; % ctri[n-2]
for I=1Iength(t) MYVWWYWWYWYWWWW
% digital implementation of Gc(z) ! p
ctrl0(i)=0.0182*error1+0.01657*error2+1.721*ctrl1-

X .
0.7558%ctrl2;  Calcuate Vctri[n] 08} ]

% store time delay data for next calculation

error2=errorl;

errorl=error0;

error=1; % l=step response; O=impulse response

ctri2=ctrl1;

ctril=ctrlo(i); 04
end

Amplitude

figure; 02F 7

% plot the step response of analog and digital system
step(G); hold on; step(Gz); hold on;

% plot the response of digital implementation
plot(t,ctrl0,'ro"); hold on;

legend('G(s)','Gz(s)','Digital Implementation');
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